Cite this article as:

Balash O. S. Modeling of Spatial Distribution of Trading Networks. Izv. Saratov Univ., Economics. Management. Law, 2011, vol. 11, iss. 2, pp. 68-70. DOI:

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

Modeling of Spatial Distribution of Trading Networks

In this paper we consider the problem of regression analysis of spatial data on an example of trading networks in the city of Saratov are considered, using the law of retail gravitation.

  1. Reilly W. J. The Law of Retail Gravitation / W. J. Reilly Co. N.Y. 1931.
  2. Lakshmanan T. R., Hansen W. G. A Retail Market Potential Model // Journal of the American Institute of Planner. 1965. № 13. P. 134–43.
  3. Gautschi D. A. Specification of Patronage Models for Re- tail Center Choice // Journal of Marketing Research. 1981. № 18. P. 162–174.
  4. Stanley T. J., Sewall M. A. Image Inputs to a Probabilistic Model: Predicting Retail Potential // Journal of Marketing. 1976. № 40. P. 48–53.
  5. Eppli M. J., Shilling J. D. How Critical Is a Good Location to a Regional Shopping Center? // Journal of Real Estate Research. 1996. № 12. P. 459–468.
  6. Okoruwa A. A., Nourse H. O., Terza J. V. Estimating Sales for Retail Centers: An Application of the Poisson Gravity Model // Journal of Real Estate Research. 1994. № 9. P. 85–97.
  7. Eppli M. J., Benjamin J. D. The Evolution of Shopping Center Research: A Review and Analysis // Journal of Real Estate Research. 1994. № 9. P. 5–32.
  8. Pace R. K., Gilley O. W. Using the Spatial Configuration of the Data to Improve Estimation // Journal of Real Estate Finance and Economics. 1997. № 14. P. 333–340.
  9. Calciu M., Salerno F. A New Approach to Spatial Management of Retail Networks, Based on German School’s Central Place Theory: Application to Bank Location / H. Mbhlbacher /J-P Flipo (eds.), Advances in Services Marketing. Gabler ; Wiesbaden. 1997.
  10. Pace R. K., Barry R., Slawson V. C. Jr., Sirmans C. F. Simultaneous Spatial and Functional Form Transformations /(ed by L. Anselin, R. Florax // Advances in Spatial Econometrics, forthcoming, Springer-Verlag. Heidelberg, 2002.
  11. Barry R. P., Pace R. K. Monte Carlo Estimates of the Log Determinant of Large Sparse Matrices // Linear Algebra and Applications. 1999. W289. P. 41–54.
Full Text (PDF): 
Short Text (PDF):