Сообщение об ошибке

Notice: Undefined variable: access_site в функции citing_article_block_content() (строка 196 в файле /var/www/izvestiya/sites/all/modules/custom/citing_an_article/citing_an_article.module).

Образец для цитирования:

Федоренко В. А. ОБРАБОТКА ЦИФРОВЫХ ИЗОБРАЖЕНИЙ СЛЕДОВ НА ПУЛЯХ ДЛЯ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОРУЖИЯ // Изв. Сарат. ун-та. Нов. сер. Сер. Экономика. Управление. Право. 2014. Т. 14, вып. 1. С. 200-?.


Рубрика: 

ОБРАБОТКА ЦИФРОВЫХ ИЗОБРАЖЕНИЙ СЛЕДОВ НА ПУЛЯХ ДЛЯ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ОРУЖИЯ

Введение. Идентификация огнестрельного оружия по следам на выстреленных пулях является одной из наиболее сложных задач судебно-баллистической экспертизы. Это вызвано тем, что индивидуальные признаки оружия, отображающиеся в следах на выстреленных пулях, обладают высокой степенью вариативности. Применяемые в настоящее время способы автоматической идентификации огнестрельного оружия оказываются малоэффективными при анализе следов электронных пулетек, содержащих десятки тысяч однотипных объектов. Методы. В работе предлагается алгоритм автоматической оценки схожести вторичных следов на выстреленных пулях, основанный на предварительной обработке изображений, их бинаризации и применении корреляционных методов. Для оценки идентификационной значимости следов используется автокорреляционная функция, а степень совпадения следов определяется по максимуму функции взаимной корреляции. Разработанный алгоритм фактически моделирует операции, которые умозрительно проводит эксперт при сравнении следов. Например, при сравнении следов методом совмещения трассы представляются в виде светлых полос относительно более темного фона независи- мо от яркости самого изображения. Экспериментальная часть. Работоспособность предлагаемого алгоритма протестирована на наборах пуль, выстреленных из 16 различных экземпляров оружия. Показана эффективность предложенного метода как при анализе парных следов, так и различающихся следов. Обсуждение результатов. Оценка идентификационной значимости следов и определение максимума функции взаимной корреляции цифровых изображений, представленных в бинарном виде, позволяет более корректно формировать приоритетный список по степени схожести сравниваемых изображений. В конечном счете это позволяет повысить эффективность проведения проверок по электронной пулетеке.

Список литературы: 

1. Бокс Дж., Дженкинс Г. Анализ временных рядов. Прогноз и управление. М. : Мир, 1974. 198 c.
2. Гансалес Р., Вудс Р. Мир цифровой обработки. Цифровая обработка изображений / пер. с англ. под ред. П. А. Чочиа. М. : Техносфера, 2005. 1072 с.

Текст в формате PDF: 
Статус: 
опубликована
Краткое содержание (PDF):