Cite this article as:

Носов В. В., Цыпин А. П. Econometric Modeling Studio Price Method of Geographically Weighted Regression. Izv. Saratov Univ. (N. S.), Ser. Economics. Management. Law, 2015, vol. 15, iss. 4, pp. 381-?. DOI: https://doi.org/10.18500/1994-2540-2015-15-4-381-387


Heading: 

Econometric Modeling Studio Price Method of Geographically Weighted Regression

Introduction. Detection and measurement of interdependencies in the housing market is one of the key issues examined econometric methods. Compared with traditional methods of geographically weighted regression extends the understanding of how the units belonging to the set of specific geographical coordinates affect the relationship between the covariates and the price of real estate. In this regard, the aim of this study was to analyze the spatial differences in the price of one-bedroom apartments presented in the secondary housing market of Orenburg. Methods. We used the method of cluster analysis, graphical method, analysis of variance, the classical regression model and geographically weighted regression. Results. Parameter estimation of the global (general) model by least squares and geographically weighted regression, has shown that SMT has a better fit, and is proof of the spatial differentiation of the regression coefficients. Conclusions. When modeling the price one-room apartment to be preferred geographically weighted regression, since it is estimated regression coefficients for each object combination and therefore recognized geographic differences in the dependencies, it is difficult to display the total regression equation.

References: 

1. Tsypin Yu. S., Tsypin A. P. Statisticheskie metody v izuchenii ipotech-nogo zhilishhnogo kreditovanija Rossii [Statistical methods in the study of Russian mortgage lending]. Novyj universitet [New University]. Ser. Economics and Law, 2012, no. 6, pp. 10–13.
2. Brunsdon C., Fotheringham A. S., Charlton M. E. Geographically weighted regression : A method for exploring spatial nonstationarity // Geographical Analysis. 1996. Vol. 28, № 3. P. 281–298.
3. McMillen D. P. One hundred fi fty years of land values in Chicago : A nonparametric approach // Journal of Urban Economics. 1996. Vol. 40, № 1. P. 100–124.
4. Zhang L. J., Shi H. J. Local modeling of tree growth by geographically weighted regression // Forest Science. 2004. Vol. 50, № 2. P. 225–244.
5. Foody G. M. Mapping the richness and composition of British breeding birds from coarse spatial resolution satellite sensor imagery // International Journal of Remote Sensing. 2005. Vol. 26, № 18. P. 3943–3956.
6. Yu D. L. Spatially varying development mechanisms in the Greater Beijing Area : a geographically weighted regression investigation // Annals of Regional Science. 2006. Vol. 40, № 1. P. 173–190.
7. Cho S. H., Chen Z., Yen S. T., English B. C. Spatial variation of output-input elasticities : Evidence from Chinese county-level agricultural production data // Papers in Regional Science. 2007. Vol. 86, № 1. P. 139–157.
8. Tu J., Xia Z. G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I : Model design and evaluation // Science of the Total Environment. 2008. Vol. 40, № 1. P. 358–378.
9. Propastin P. A., Kappas M. Reducing uncertainty in modeling the NDVI-precipitation relationship : A comparative study using global and local regression techniques // Giscience & Remote Sensing. 2008. Vol. 45, № 1. P. 47–67.
10. Balash V. A., Balash O. S., Harlamov A. V. Jekonometricheskij analiz geokodirovannyh dannyh o cenah na zhiluju nedvizhimost’ [Econometric analysis of geo-coded data on the prices for residential real estate]. Prikladnaja jekonometrika [Applied Econometrics], 2011, no. 2 (22), pp. 62–67.
11. Kashkova Yu. N., Loginov D. V. Perspektivy primenenija geografi cheski vzveshennoj regressii dlja ucheta prostranstvennyh zavisimostej v geo-logo-geofi zicheskih dannyh [Prospects for the use of geographically weighted regression to account for spatial dependencies in the geological and geophysical data. Vestnik CKR Rosnedra [Bulletin of the CDC Rosnedra], 2011, no. 6, pp. 20–23.
12. Fotheringham A., Brunsdon С., Charlton М. Geographically Weighted Regression. Chichester : John Wiley & Sons Ltd, 2002. 269 p.
13. Leung Y, Mei C. L, Zhang W. X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model // Environment and Planning. 2000. Vol. 32, № 1. P. 9–32.
14. Brunsdon C., Fotheringham A., Charlton M. Some notes on parametric significance tests for Geographically Weighted Regression // Journal of Regional Science. 1999. Vol. 39, № 3. P. 497–524.

Full Text (PDF): 
Status: 
опубликована
Short Text (PDF):